Назовите пуриновые и пиримидиновые основания днк

Назовите пуриновые и пиримидиновые основания днк

Синтез пуриновых и пиримидиновых мононуклеотидов

СИНТЕЗ МОНОНУКЛЕОТИДОВ

Для синтеза мононуклеотидов de novo необходимы очень простые вещества: CO2 и рибозо-5-фосфат (продукт 1-го этапа ГМФ-пути). Синтез происходит с затратой АТФ. Кроме этого, необходимы заменимые аминокислоты, которые синтезируются в организме, поэтому даже при полном голодании синтез нуклеиновых кислот не страдает.

РОЛЬ АМИНОКИСЛОТ В СИНТЕЗЕ МОНОНУКЛЕОТИДОВ

1)Аспарагин. Является донором амидной группы.

2) Аспарагиновая кислота.

    а) Является донором аминогруппы

    б) Участвует в синтезе всей молекулой.

3) Глицин

    а) Является донором активного С1.

    б) Участвует в синтезе всей молекулой.

4) Серин. Является донором активного С1.

ПЕРЕНОС ОДНОУГЛЕРОДНЫХ ФРАГМЕНТОВ

В организме человека существуют ферменты, которые могут извлекать из некоторых аминокислот С1-группу. Такие ферменты являются сложными белками. В качестве кофермента содержат производное витамина ВС – фолиевой кислоты. Фолиевой кислоты много в зеленых листьях, к тому же, этот витамин синтезируется микрофлорой кишечника. В клетках организма фолиевая кислота (ФК) дважды восстанавливается (к ней присоединяется водород) с участием фермента НАДФ.Н2-зависимой редуктазы, и превращается в тетрагидрофолиевую кислоту (ТГФК).

Активный С1 извлекается из глицина или серина.

В каталитическом центре фермента, содержащего ТГФК, имеются две –NH-группы, которые участвуют в связывании активного С1. Схематически процесс можно представить так:

НАДН2, который образуется в обратной реакции, может быть использован для восстановления пирувата в лактат (гликолитическая оксидоредукция). Реакция катализируется ферментом глицинсинтетазой. После этого метилен-ТГФК отделяется от белковой части фермента, и затем возможны два варианта ее превращений:

1)    Метилен-ТГФК может стать небелковой частью ферментов синтеза мононуклеотидов.

2)    Метиленовая группировка может видоизменяться до:

Эти группировки связаны только с одним из атомов азота ТГФК, но тоже могут стать субстратами для синтеза мононуклеотидов.

Поэтому любая из группировок, связанная с ТГФК, называется активным С1.

Для синтеза любого из нуклеотидов требуется активная форма рибозо-фосфата — фосфорибозилпирофосфат (ФРПФ), образующаяся в следующей реакции:

Фосфорибозилпирофосфаткиназа (ФРПФ-киназа) является ключевым ферментом для синтеза всех мононуклеотидов. Ингибируется этот фермент по принципу отрицательной обратной связи избытком АМФ и ГМФ. При генетическом дефекте ФРПФ-киназы наблюдается потеря чувствительности фермента к действию своих ингибиторов. В результате возрастает продукция пуриновых мононуклеотидов, а, значит, и скорость их разрушения, что приводит к увеличению концентрации мочевой кислоты – наблюдается подагра.

После образования ФРПФ реакции синтеза пуриновых и пиримидиновых мононуклеотидов различны.

ПРИНЦИПИАЛЬНЫЕ РАЗЛИЧИЯ В СИНТЕЗЕ ПУРИНОВЫХ И ПИРИМИДИНОВЫХ МОНОНУКЛЕОТИДОВ:

Особенностью синтеза пуриновых нуклеотидов является то, что циклическая структура пуринового азотистого основания постепенно достраивается на активной форме рибозо-фосфата, как на матрице. При циклизации получается уже готовый пуриновый мононуклеотид.

При синтезе пиримидиновых мононуклеотидов сначала образуется циклическа структура пиримидинового азотистого основания, которая в готовом виде переносится на рибозу – на место пирофосфата.

СИНТЕЗ ПУРИНОВЫХ МОНОНУКЛЕОТИДОВ (АМФ и ГМФ)

Существует 10 общих и 2 специфических стадии. В результате общих реакций образуется пуриновый мононуклеотид, являющийся общим предшественником будущих АМФ и ГМФ – инозинмонофосфат (ИМФ). ИМФ в качестве азотистого основания содердит гипоксантин.

Пуриновое кольцо строится из СО2, аспарагиновой кислоты, глутамина, глицина и серина. Эти вещества либо полностью включаются в пуриновую структуру, или передают для ее построения отдельные группировки.

Аспарагиновая кислота отдает аминогруппу и превращается в фумаровую кислоту.

Глицин: 1) полностью включается в структуру пуринового азотистого основания; 2) является источником одноуглеродного радикала.

Серин: тоже является донором одноуглеродного радикала.

ФРПФ + глутамин ——-> глутамат + ФФ + фосфорибозиламин

Фермент, который катализирует эту реакцию, называется фосфорибозиламидотрансфераза. Он является ключевым ферментом синтеза всех пуриновых мононуклеотидов. Регулируется по принципу отрицательной обратной связи. Аллостерическими ингибиторами этого фермента являются АМФ и ГМФ.

На второй стадии фосфорибозиламин взаимодействует с глицином.

Третья стадия — включение углеродного атома, донором которого является глицин или серин.

Затем достраивается шестичленный фрагмент пуринового кольца:

4-ая стадия — карбоксилирование с помощью активной формы СО2 при участии витамина Н — биотина.

5-ая стадия — аминирование с участием аминогруппы из аспартата.

6-ая стадия — аминирование за счет аминогруппы глутамина.

7-ая, заключительная стадия — включение одноуглеродного фрагмента (с участием ТГФК), и образуется готовый ИМФ.

 Затем протекают специфические реакции, в результате которых ИМФ превращается либо в АМФ, либо в ГМФ. При таком превращении в молекуле появляется аминогруппа, причем в случае превращения в АМФ — на месте ОН-группы. При образовании АМФ источником азота является аспарагиновая кислота, а для образования ГМФ необходим глутамин.

Далее из НМФ образуются НДФ и НТФ с помощью АТФ. Затраты АТФ на синтез нуклеотидов de novo очень велики. Этот способ синтеза является энергетически невыгодным.

В некоторых тканях есть альтернативный способ синтеза – реутилизация (повторное использование) пуриновых азотистых оснований, которые образовались при распаде нуклеотидов.

Ферменты, катализирующие реакции реутилизации, наиболее активны в быстроделящихся клетках (эмбриональные ткани, красный костный мозг, раковые клетки), а также в тканях головного мозга. На схеме видно, что фермент гуанингипоксантинФРПФтрансфераза обладает более широкой субстратной специфичностью, чем аденинФРПФтрансфераза – помимо гуанина, может переносить и гипоксантин — образуется ИМФ. У человека встречается генетический дефект этого фермента — “болезнь Леша-Нихана”. Для таких больных характерны выраженные морфологические изменения в головном и костном мозге, умственная и физическая отсталость, агрессия, аутоагрессия. В эксперименте на животных синдром аутоагрессии моделируется путем скармливания им кофеина (пурина) в больших дозах, который ингибирует процесс реутилизации гуанина.

СИНТЕЗ ПИРИМИДИНОВЫХ МОНОНУКЛЕОТИДОВ.

Сначала образуется сначала циклическая структура пиримидинового азотистого основания, и только затем присоединяется рибозо-фосфат.

Первая реакция синтеза пиримидиновых монуклеотидов приводит к образованию карбамоилфосфата. Одна из молекул АТФ является донором фосфата.

Оротовая кислота – первое азотистое основание на пути синтеза пиримидинов – общий предшественник остальных пиримидинов. У многих живых организмов для синтеза оротовой кислоты требуется три фермента. У человека же все реакции образования оротата катализирует один-единственный фермент, в составе которого находятся три активных центра.

Оротовая кислота затем превращается в оротидинмонофосфат (ОМФ). Далее ОМФ декарбоксилируется, и образуется УМФ. Обе эти реакции катализирует один фермент с двумя активными центрами.

Другие пиримидиновые нуклеотиды можно рассматривать как производные УМФ. Для ЦМФ источником NH2-группы является амидная группировка глутамина.

Ферменты обмена пиримидиновых нуклеотидов способны распознавать в субстрате не только азотистое основание, но и количество остатков фосфорной кислоты. Как показано на схеме, цитидиновые нуклеотиды образуются только на основе трифосфатной формы.

Субстратами для синтеза РНК являются АТФ, ГТФ, ЦТФ, УТФ — рибонуклеотиды, а для синтеза ДНК – нуклеотиды, содержащие дезоксирибозу — dНТФ (дезоксирибонуклеотиды). Дезоксирибоза – продукт восстановления рибозы. Дезоксирибонуклеотиды образуются из рибонуклеотидов под действием фермента НДФ-редуктазы.

Источником водорода является фермент НДФ-редуктаза, содержащий две SH-группы. Регенерация восстановленной формы НДФ-редуктазы происходит с помощью цепи реакций, где непосредственным донором водорода является специальный белок – тиоредоксин, который получает два атома водорода от трипептида глутатиона, переходящего при этом в окисленную форму. Последующее восстановление окисленного глутатиона с помощью фермента глутатионредуктазы, использующей для этого НАДФ.Н2(смотрите схему).

Так образуются все dНДФ, в том числе и dУДФ, однако в состав ДНК он не входит, а преобразуется в тимидиловые нуклеотиды. Для этого требуется dУМФ:

ТМФ может образоваться как в дезоксиформе (dТМФ), так и в окси- — ТМФ. Реакцию образования (d)ТМФ катализирует фермент тимидилатсинтетаза, в состав ее кофермента входит ТГФК. Этот фермент – мишень для многих фармакологических препаратов. Постоянно тимидиловые нуклеотиды необходимы только для синтеза ДНК, поэтому угнетение этого фермента тормозит деление клеток, но не влияет на скорость синтеза информационной РНК (и-РНК) и белков. Ингибиторы тимидилатсинтетазы применяются в терапии рака.

Существуют 2 основных группы таких веществ:

1)  Конкурентные ингибиторы — вещества, похожие на субстрат. Например, его производное — dУМФ-5-фторурацил.

2)  Вещества, похожие на кофермент тимидилатсинтазы — ТГФК. Например, антивитамин ФК – препарат метатрексат.

Образовавшийся (d)ТМФ подвергается фосфорилированию:

(d)ТМФ Þ (d)ТДФ Þ (d)ТТФ.

Остальные мононуклеотиды могут быть использованы для синтеза ДНК только в трифосфатной дезоксиформе: dАТФ, dГТФ, dЦТФ.

СИНТЕЗ НУКЛЕИНОВЫХ КИСЛОТ ИЗ МОНОНУКЛЕОТИДОВ

Нуклеиновые кислоты (НК) являются полимерами. Поэтому их синтез представляет собой цепочку реакций полимеризации мононуклеотидов. В ходе этих реакций идет постепенное удлинение полинуклеотидной цепи.

Субстратами для синтеза являются мононуклеотиды в трифосфатной форме, они же являются источниками энергии (содержат макроэргические связи). В ходе синтеза отщепляется ФФ и происходит освобождение энергии. В общем вид процесс выглядит так:

Образуется 3’,5’-фосфодиэфирная связь. Выделяющийся пирофосфат (ФФ) разрушается пирофосфатазой.

Для синтеза нуклеиновых кислот, помимо субстратов и ферментов, обязательно нужна матрица, которая определяет порядок присоединения субстратов – мононуклеотидов (комплементарность к нуклеотидам ДНК).

Ферменты синтеза РНК – РНК-полимеразы, ДНК – ДНК-полимеразы. Полимеразы относятся к классу синтетаз. Их биосинтез контролируют сами субстраты – нкуклеиновые кислоты.

Несмотря на общий механизм действия, между РНК-полимеразами и ДНК-полимеразами существуют важные отличия:

1) ДНК полимераза не может начать синтез, а только удлиняет уже имеющийся полинуклеотидный фрагмент. Для начала синтеза необходима особая РНК-полимераза – праймаза, синтезирующая праймеры (затравки).

2) ДНК-полимеразные реакции протекают на протяжении всей матрицы: образуется комплементарная молекула ДНК. РНК-полимеразы действуют только на определенных участках нити ДНК – от промоторов до терминаторов (промоторы указывают на начало транскрипции, терминаторы — на ее окончание).

Образующаяся молекула ДНК является готовым продуктом, а продукт действия РНК-полимераз – только первичный транскрипт (высокомолекулярный предшественник зрелой РНК). После его синтеза происходит целая серия реакций посттранкрипционной модификации РНК. Осуществляется тремя группами ферментов:

1)  Специфические эндонуклеазы. Их действие приводит к фрагментации первичного транскрипта.

2)  Ферменты, способные образовывать 3’,5’-фосфодиэфирные связи – лигазы, которые сшивают фрагменты.

Действие специфических эндонуклеаз и лигаз обозначается термином «сплайсинг».

Затем вступает в действие фермент, присоединяющий к каждой молекуле и-РНК «кэп»-фрагмент – 3-метилГТФ, а также фермент полиаденилатполимераза, присоединяющий АТФ к 3′-концу молекулы (полиаденилирование ).

3)  Ферменты, которые осуществляют преобразование азотистых оснований в составе РНК (метилирование аденина, гуанина, восстановление урацила до дигидроурацила, дезаминирование азотистых оснований. Модифицированные таким образом продукты известны как минорные азотистые основания. Они служат как для защиты РНК от действия нуклеаз, так и для формирования высших структур РНК. В наибольшем количестве минорные азотистые основания находятся в составе транспортной-РНК (т-РНК). Минорные азотистые основания не образуют комплементарных пар, поэтому наблюдается образование петель.

В организме человека встречаются следующие полимеразы:

ДНК-ПОЛИМЕРАЗЫ:

— альфа-ДНК-полимеразы отвечают за синтез основной цепи;

— бета-ДНК-полимеразы восстанавливают поврежденные участки ДНК;

— гамма-ДНК полимеразы — митохондриальные ферменты, содержатся в митохондиях и осуществляют репликацию митохондриальной ДНК.

РНК-ПОЛИМЕРАЗЫ:

I — участвуют в синтезе транспортной РНК (т-РНК). При синтезе транспортной РНК (т-РНК) к концу каждой молекулы присоединяется последовательность из трех мононуклеотидов: ЦМФ-ЦМФ-АМФ (ЦЦА). Эта последовательность необходима для присоединения аминокислоты к т-РНК.

II — участвуют в синтезе информационной (матричной) РНК(и-РНК, м-РНК);

III — участвуют в синтезе остальных видов РНК.

Ингибитором РНК-полимеразы-II является пептид L-амонитин. Встречается в ядовитых грибах Amonyta(бледная поганка).

Синтез ДНК называется репликацией. Направление фосфодиэфирных связей одной из синтезируемых полинуклеотидных цепей ДНК совпадает с направлением синтеза (5′—>3′), поэтому она синтезируется непрерывно и сразу целиком. А у другой — не совпадает (3′—>5′). Поэтому она синтезируется частями. Эти части называются «фрагменты Оказаки». Синтезировать фрагменты Оказаки de novo (с нуля) ДНК-полимеразы не могут, поэтому для синтеза каждого фрагмента нужна «затравка» — праймер. Праймер — это кусочек цепи РНК. Синтез праймеров катализируют специальные ферменты — праймазы (это один из вариантов РНК-полимераз). Синтез РНК происходит на определенных участках молекулы ДНК и называется транскрипцией. В цепи ДНК существуют специальные участки:. При транскрипции образуется высокомолекулярный предшественник РНК — первичный транскрипт. Затем здесь же, в ядре клетки, идет постсинтетическая модификация РНК — сплайсинг. Этот процесс катализируют ферменты эндонуклеазы — из первичного транскрипта вырезаются интроны. Оставшиеся экзоны сшиваются РНК-лигазами. Далее к 5′-концу молекулы РНК присоединяется 7-метил-ГТФ (КЭП-фрагмент) — этот процесс называется «кэпирование». К 3′-концу присоединяется полиадениловый «хвост» (полиАМФ) — реакцию катализирует.

Особенностью посттранскрипционной модификации рибосомальной РНК (р-РНК) является метилирование азотистых оснований.



В 40-50-х годах ХХ столетия при проведении опытов с мечеными изотопами удалось выяснить происхождение атомов пуринового ядра при синтезе пуринов denovo. Было установлено, что в формировании кольца принимают участие аминокислоты ( аспарагиновая, глициновая, глутаминовая) СО2 и два одноуглеродных производных тетрагидрофолата: метенил-Н4-фолат. Этим способом образуется основное количество пуриновых нуклеотидов, тогда как нуклеотиды, синтезирующиеся за счёт повторного использования азотистых оснований или нуклеозидов, составляют не более 10-20% общего фонда этих соединений.

Регуляция синтеза пуриновых нуклеотидов

Образование АМФ и ГМФ регулируется аллостерическими механизмами по принципу обратной связи (рис. 26.1). АМФ и ГМФ ингибируют активность ферментов синтеза фосфорибозиламина, а также, соответственно, активность аденилосукцинатсинтетазы и ИМФ-дегидрогеназы. При этом АТФ и ГТФ оказывают перекрестное активирующее влияние.

Рис. 26.1. Регуляцияскорости синтеза пуринов.

Биосинтез пиримидиновых нуклеотидов

Фонд пиримидиновых нуклеотидов, подобно пуриновым нуклеотидам, в основном синтезируется из простых предшественников denovo, и только 10-20% от общего количества образуется по «запасным» путям из азотистых оснований или нуклеозидов.

В отличие от синтеза пуринов, где формирование гетероциклического основания осуществляется на остатке рибозо-5-фосфата, пиримидиновое кольцо синтезируется из простых предшественников: глутамина, СО2 и аспарагиновой кислоты и затем связывается с рибозо-5-фосфатом, полученным от ФРДФ.

Процесс протекает в цитозоле клеток. Синтез ключевого пиримидинового нуклеотида – УМФ идёт с участием 3 ферментов, 2 из которых полифункциональны.

Глутамин + СО2

Пурины, ФРПФ

Карбамоилфосфат

t1 аспартат

Карбамоиласпартат

УМФ

УТФ

ЦТФ

Рис. 26.2. Регуляция синтеза пиримидиновых нуклеотидов.

Распад нуклеиновых кислот в желудочно-кишечном тракте и тканях

Нуклеиновые кислоты поступают в организм с пищей главным образом в составе нуклеопротеинов и высвобождаются в результате действия протеолитических ферментов желудочно-кишечного тракта. Далее под действием дезоксирибонуклеазы и рибонуклеазы панкреатического сока нуклеиновые кислоты гидролизуются до нуклеотидов. Нуклеотиды под воздействием нуклеотидаз или фосфатаз распадаются до нуклеозидов, которые могут всасываться или гидролизоваться далее до азотистых оснований и пентоз.

В тканях нуклеиновые кислоты гидролизуются дезоксирибонуклеазами (ДНК-азы) и рибонуклеазами (РНК-азы) до нуклеотидов, которые под действием нуклеотидаз теряют остаток фосфора. Образующиеся нуклеозиды пуринового и пиримидинового ряда подвергаются дальнейшему катаболизму.

Нуклеопротеины

Протеазы

ДНК, РНК

Дезоксирибонуклеаза,

рибонуклеаза

Нуклеотиды

Нуклеотидаза,

Рi фосфатаза

Нуклеозиды

Нуклеозидазы

Азотистые основания + рибоза,

дезоксирибоза

Рис. 26.3. Распад нуклеиновых кислот в желудочно-кишечном тракте.

Нарушения обмена нуклеотидов

Ксантинурия

Ксантинурия – наследственная энзимопатия, связанная с дефектом ксантиноксидазы, что приводит к нарушению катаболизма пуринов до мочевой кислоты.

Различия в катаболизме пуриновых и пиримидиновых азотистых оснований.

В плазме крови и моче может наблюдаться 10-ти кратное снижение уровня мочевой кислоты, но увеличивается в 10 и более раз экскреция ксантина и гипоксантина. Основное клиническое проявление – образование ксантиновых конкрементов, величиной до нескольких миллиметров, коричневого цвета, сравнительно мягкой консистенции. Постепенно может развиться патология почек.

Оротацидурия

Оротацидурия – наследственное заболевание связанное с утратой двух ферментов пути синтеза пиримидинов – оротат-фосфорибозилтрансферазы и оротидиндекарбоксилазы (I тип) или только отсутствием оротидиндекарбоксилазы (II тип). В детском возрасте для больных характерны отставание в развитии, мегалобластическая анемия, оротовая ацидурия, подверженность инфекциям. Организм испытывает «пиримидиновый голод». С мочой при заболевании I типа может выделяться до 1,5 г в сутки оротовой кислоты, что в 1000 раз превышает норму. Вместе с тем, заболевание легко поддается лечению уридином.

Подагра

Мочевая кислота, являясь конечным продуктом распада пуринов, выделяется из организма с мочой. При усиленном образовании мочевой кислоты в тканях организма развивается гиперурикемия. Это состояние может быть вызвано наследственными дефектами обмена пуринов, например, нарушением реутилизации пуриновых азотистых оснований (синдром Леша-Наийхана), а также наблюдается при заболеваниях крови, почек, отравлениях свинцом и других состояниях. Гиперурикемия часто приводит к развитию подагры. Это заболевание характеризуется отложением кристаллов солей мочевой кислоты (уратов) в суставах(преимущественно плюснефалангового большого пальца) и вокруг них, в мягких тканях, местах прикрепления связок, сухожилий. Постепенно развивается полиартрит и появляются подагрические узлы. Хронический подагрический артрит приводит к деформации сустава. При отложении кристаллов в почках развивается мочекаменная болезнь. Подагрой страдают 0,3% – 1,7% взрослого населения. Мужчины болеют в 20 раз чаще женщин. Для лечения подагры используют аллопуринол – структурный аналог гипоксантина. Аллопуринол блокирует ксантиноксидазу и уменьшает образование мочевой кислоты.

ГЛАВА 27
РЕГУЛЯЦИЯ И ВЗАИМОСВЯЗЬ МЕТАБОЛИЗМА

Для нормального функционирования организма должна осуществляться точная регуляция потока метаболитов по анаболическим и катаболическим путям. Все сопутствующие химические процессы должны протекать со скоростями, отвечающими требованиям организма как единого целого в условиях окружающей среды. Генерация АТФ, синтез макромолекул, транспорт, секреция, реабсорбция и другие процессы должны чутко реагировать на изменения в окружении, в котором находится клетка, орган или весь организм. Клеточный метаболизм основан на принципе максимальной экономии. Клетка потребляет в каждый данный момент как раз такое количество питательных веществ, которое позволяет ей удовлетворять свои энергетические нужды. Такая высокая организация и скоординированность метаболизма достигается с помощью регуляторных механизмов. Эти механизмы достаточно разнообразны.

Различают несколько уровней регуляции метаболизма:
1. Молекулярный. 2. Клеточный. 3. Органный (тканевой).
4. Организменный.

По времени достижения регуляторного эффекта различают быструю регуляцию (действующую в течение секунд и минут) и медленную регуляцию (в течение часов и суток).

Основными регуляторными механизмами являются:

Регуляция на уровне мембран.

2. Регуляция с участием циклических нуклеотидов и других вторичных посредников.

3. Регуляция количества ферментов.

4. Регуляция ферментативной активности.

5. Гормональная регуляция.

Регуляция на уровне мембран может осуществляться посредством нескольких механизмов. Во-первых, это избирательная проницаемость мембран для различных метаболитов и ионов. Во-вторых, способность мембран фиксировать гормоны с помощью рецепторов. В-третьих, ферментативная активность мембран. На уровне мембран реализуются, по крайней мере частично, такие регуляторные факторы, как доступность субстратов и коферментов, удаление продуктов реакции.

Циклические нуклеотиды и другие вторичные посредники участвуют в реализации действия целого ряда гормонов.

Регуляция количества ферментов. Концентрация любого фермента определяется соотношением скоростей его синтеза и распада. Скорость синтеза белков-ферментов регулируется с помощью механизмов, общих для регуляции синтеза других белков. Влияние регуляторных факторов может интегрально проявляться в виде репрессии или индукции синтеза фермента. Данный механизм относится к медленному типу регуляции метаболизма.

Регуляция активности ферментов. Это один из наиболее разнообразных методов регуляции метаболизма. Он может реализоваться по целому ряду механизмов, которые подробно изложены в главе 4.



  Циклические нуклеотиды – это нуклеотиды, в молекулах которых остаток фосфорной кислоты, связываясь с углеродными атомами рибозы в 5″ и 3″ положениях, образует кольцо. Одним из представителей циклических неклеотидов является цАМФ(3’,5’-аденозинмонофосфат).

Циклический 3″,5″-аденозинмонофосфат (цАМФ)

6.1.            Циклический AMФ синтезируется аденилатциклазой и расщепляется фосфодиэстеразой

цАМФ образуется из АТФ под действием мембранного фермента аденилатциклазы:

Эта реакция в небольшой степени эндергонична. Источником энергии для синтеза цАМФ служит последующий гидролиз пирофосфата. Специфическая фосфодиэстераза разрушает цАМФ путем гидролиза до AMФ:

6.2. АМФ служит вторым посредником при действии многих гормонов

Работа Эрла Сазерленда , по выяснению механизма действия адреналина и глюкагона га распад гликогена и образование глюкозы, привела к созданию концепции о роли цАМФ как второго посредника в механизме действия некоторых гормонов. Первым посредником является сам гормон. Сущность этой концепции заключается в следующем.

1.Плазматические мембраны клеток содержат рецепторы гормонов.

2. Взаимодействие гормона с его специфическим рецептором на плазматической мембране ведет к стимуляции аденилатциклазы, также связанной с плазматической мембраной.

3.В результате активации аденилатци клазы в клетке увеличивается содержание цАМФ.

4. Действие цАМФ проявляется внутри клетки и состоит в изменении скорости одного или более процессов.

   Важная особенность этой гипотезы второго посредника состоит в том, что она не предполагает проникновения гормона в клетку. Действие самого гормона ограничивается клеточной мембраной.

Синтез пуриновых и пиримидиновых мононуклеотидов

Биологический эффект гормона опосредован действием цАМФ внутри клетки; непосредственного действия сам гормон не оказывает. Обоснованность этой концепции была проверена с использованием целого ряда экспериментальных критериев, а именно:

1. Аденилатциклазу клетки должны стимулировать те гормоны, которые дествуют на эту клетку как на мишень. Гормоны, не вызывающие специфического биологического ответа данной клетки, не должны повышать в ней активности этого фермента.

2.                   Концентрация цАМФ в клетках-мишенях должна изменяться пропорционально биологическому ответу этих клеток на гормональную стимуляцию, т.е. она должна проявлять временную и количественную зависимость от концентрации гормона.

Ингибиторы фосфодиэстеразы, например теофиллин или кофеин, должны действовать синергично с теми гормонами, эффект которых опосредован вторым посредником.

4. Добавление цАМФ или родственного ему соединения к клеткам-мишеням должно имитировать биологическое действие гормона. (На практике цАМФ в таких опытах не используется, так как он плохо проникает в клетки; однако менее полярные производные цАМФ, в частности дибутирил- цАМФ, проникают в клетки и оказывают свое действие.)

Проведенные опыты показали, что циклический AMP является вторым посредником при действии не только адреналина и глюкагона, но и многих других гормонов. цАМФ оказывает влияние на исключительно большое число клеточных процессов. Так, под действием этого соединения увеличивается распад накопленных запасов топливных веществ, повышается выделение соляной кислоты слизистой желудка, происходит дисперсия пигментных гранул меланина, уменьшается агрегация тромбоцитов.

Синтез пуриновых нуклеотидов

Пуриновые основания, образующиеся в процессе переваривания нуклеиновых кислот в кишечнике, практически не используются, поэтому их синтез осуществляется из низкомолекулярных предшественников, продуктов обмена углеводов и белков.

Пуриновый цикл собирается постепенно путем присоединения необходимых фрагментов к рибозо-5-фосфату. Рибозо-5-фосфат при участии АТФ и пирофосфокиназы превращается в 5-фосфорибозил-1-пирофосфат (ФРПФ).

Затем осуществляется 9 последовательных реакций, завершающися сборкой первого нуклеотида – инозиновой кислоты (ИМФ) с гипоксантином в качестве основания. ИМФ является предшественником пуриновых нуклеотидов.

ФРПФ взаимодействует с глутамином, являющимся донором NH2-группы, в результате чего образуется b-5-фосфорибозил-амин. На следующей стадии присоединяется вся молекула глицина к свободной NH2-группе b-5-фосфорибозил-амина с образованием глицинамидрибонуклеотида. Затем цепь удлиняется за счет присоединения формильной группы из N5, N10-метил-ТГФК (ТГФК – тетрагидрофолиевая кислота) с образованием формилглицинамидрибонуклеотида. На формильную группу формилглицинамидрибонуклеотида переносится далее амидная группа глутамина и синтезируется формилглицинамидинрибонуклеотид. На следующей стадии замыкается пятичленное имидазольное кольцо и образуется 5-аминоимидазолри­бонуклеотид, который способен акцептировать СО2 с образованием рибонуклеотида 5-аминоимидазол-4-карбоновой кислоты. В последующем двухступенчатом процессе, в котором участвуют аспарагиновая кислота и АТФ, образуется 5-аминоимидазол-4 карбоксамидрибонуклеотид и освобождается фумаровая кислота. В этих реакциях азот аспарагиновой кислоты включается в 1-е положение будущего пуринового ядра. Последний углеродный атом пиримидинового остатка кольца пурина вводится в виде формильного остатка (источник N10-метил-ТГФК), который присоединяется к 5-NH2-группе. После этого отщепляется молекула воды и второе кольцо замыкается. В результате образуется первый пуриновый нуклеотид – ИМФ. АМФ и ГМФ образуются из ИМФ.

В реакциях участвуют по два фермента. Образование ГМФ из ИМФ катализирует ИМФ-дегидрогеназа и ГМФ-синтеза, а образование АМФ из того же предшественника катализируется последовательным действием аденилосукцинатсинтетазы и аденилосукцинат-лиазы.

В синтезе АМФ из ИМФ специфическое участие принимают аспарагиновая кислота, являющаяся донором NH2-группы, и ГТФ в качестве источника энергии; промежуточным продуктом реакции является аденилоянтарная кислота.

Синтез пуриновых нуклеотидов довольно сложен

Биосинтез ГМФ, напротив, начинается с дегидрогеназной реакции ИМФ с образованием ксантозиловой кислоты.

Превращение АМФ и ГМФ в соответствующие нуклеозидди- и нуклеозидтрифосфаты также протекает в 2 стадии при участии специфических нуклеозидмонофосфат- и нуклеозиддифосфаткиназ:

ГМФ + АТФ ГДФ + АДФ

ГДФ + АТФ ГТФ + АДФ

Пуриновые основания у млекопитающих активно синтезируются в печени. Клетки головного мозга, эритроциты, нейтрофилы особенно зависят от поступления пуринов. Синтез нуклеотидов, используя готовые пуриновые основания, осуществляется только в эмбриональной, регенерирующей, опухолевой ткани. Все ферменты синтеза и распада пуриновых нуклеотидов находятся в цитозоле клеток.

Синтез пуриновых нуклеотидов тормозится по принципу обратной связи, т.е. ингибированием первой стадии переноса аминогруппы глутамина на ФРПФ. Фермент, катализирующий эту стадию, является аллостерическим регуляторным ферментом. Особенность механизма регуляции заключается в том, что избыток ГМФ в клетках оказывает аллостерическое торможение только на свой собственный синтез, не влияя на синтез АМФ, и, наоборот, накопление АМФ подавляет свой синтез, не ингибируя синтеза ГМФ.

Предыдущая43444546474849505152535455565758Следующая

Дата добавления: 2015-07-06; просмотров: 1169;

ПОСМОТРЕТЬ ЕЩЕ:

Источники

Растительные продукты, дрожжи, мясо, печень, почки, желток яиц. Витамин активно синтезируется дружественной кишечной микрофлорой.

Суточная потребность

400 мкг.

Строение

Витамин представляет собой комплекс из трех составляющих — птеридина, парааминобензойной кислоты и глутаминовой кислоты. Остатков глутамата, соединенных через γ-карбоксильную группу, может быть разное количество.

Биохимические функции

Коферментной формой витамина является тетрагидрофолиевая кислота (ТГФК, Н4ФК).

Непосредственная функция тетрагидрофолиевой кислоты — перенос одноуглеродных фрагментов, которые присоединяются к атомам N5 или N10:

  • формила — в составе N5-формил-ТГФК и N10-формил-ТГФК;
  • метенила — в качестве N5,N10-метенил-ТГФК;
  • метилена — в виде N5,N10-метилен-ТГФК;
  • метила — в форме N5-метил-ТГФК;
  • формимина — в составе N5-формимино-ТГФК.

Благодаря способности переносить одноуглеродные фрагменты, витамин:

В клетке N5-метил-ТГФК образуется в необратимой реакции из N5,N10-метилен-ТГФК. При этом единственным способом получить свободную ТГФК для других клеточных нужд является реакция превращения гомоцистеина в метионин. При дефиците витамина В12 последняя реакция нарушается и возникает внутриклеточный дефицит витамина, хотя в клетке и в крови его (в виде метил-ТГФК) может быть много. Такое явление получило название «ловушка для фолата».

Гиповитаминоз

Причина

Пищевая недостаточность, кислые продукты, тепловая обработка пищи, прием лекарств (барбитураты, сульфаниламиды и антибиотики, некоторые цитостатики – аминоптерин, метотрексат), алкоголизм и беременность.

Клиническая картина

В первую очередь затрагиваются органы кроветворения: так как клетки не теряют способности расти, но в них происходит нарушение синтеза ДНК с остановкой деления, то это приводит к образованию мегалобластов (крупных клеток) и мегалобластической анемии.

115. Общее представление о синтезе пуриновых и пиримидиновых оснований.

Лейкопения присутствует по той же причине.

Аналогично развивается поражение слизистых желудка и кишечного тракта (гастриты, энтериты), глоссит.

Отмечается замедление роста, конъюнктивит, ухудшение заживления ран, иммунодефициты, оживление хронических инфекций и субфебрилитет.

Лекарственные формы

Фолинат кальция.

Примечания

См. также

Строение фолиевой кислоты.Строение тетрагидрофолиевой кислоты.Строение и взаимопревращение активных форм тетрагидрофолиевой кислоты.

Структурная формула

Истинная, эмпирическая, или брутто-формула: C5H6N2O2

Химический состав Тимина

СимволЭлементАтомный весЧисло атомовПроцент массы
C Углерод 12,011 5 47,6%
H Водород 1,008 6 4,8%
N Азот 14,007 2 22,2%
O Кислород 15,999 2 25,4%

Молекулярная масса: 126,115

Тимин (5-метилурацил)— производное пиримидина, одно из пяти азотистых оснований. Присутствует во всех живых организмах, где вместе с дезоксирибозой входит в состав нуклеозида тимидина, который может фосфорилироваться 1—3 остатками фосфорной кислоты с образованием нуклеотидов тимидин моно-, ди- или трифосфорной кислоты (ТМФ, ТДФ и ТТФ).

Синтез и катаболизм пуриновых оснований

Дезоксирибонуклеотиды тимина входят в состав ДНК, в РНК на его месте располагается рибонуклеотид урацила. Тимин комплементарен аденину, образуя с ним 2 водородные связи. Тиминовые основания часто окисляются до гидантоинов с течением времени после смерти организма.
Согласно исследованиям, тимин рассеивает энергию ультрафиолетового излучения, обеспечивая защиту ДНК от разрушительного воздействия.



Источник: magictemple.ru


Добавить комментарий