Облучение рентгеновскими лучами

Облучение рентгеновскими лучами

В изучении и практическом использовании атомных явлений одну из важнейших ролей играют рентгеновские лучи. Благодаря их исследованию было сделано множество открытий и разработаны методы анализа вещества, применяемые в самых разных областях. Здесь мы рассмотрим один из видов рентгеновских лучей – характеристическое рентгеновское излучение.

Природа и свойства рентгеновских лучей

Рентгеновское излучение – это высокочастотное изменение состояния электромагнитного поля, распространяющееся в пространстве со скоростью около 300 000 км/с, то есть электромагнитные волны. На шкале диапазона электромагнитного излучения рентген располагается в области длин волн от приблизительно 10-8 до 5∙10-12 метров, что на несколько порядков короче оптических волн. Это соответствует частотам от 3∙1016 до 6∙1019 Гц и энергиям от 10 эВ до 250 кэВ, или 1,6∙10-18 до 4∙10-14 Дж. Следует отметить, что границы частотных диапазонов электромагнитного излучения достаточно условны вследствие их перекрытия.

Электромагнитный спектр

Источником рентгеновского излучения является взаимодействие ускоренных заряженных частиц (электронов высоких энергий) с электрическими и магнитными полями и с атомами вещества.

Фотонам рентгеновских лучей свойственны высокие энергии и большая проникающая и ионизирующая способность, особенно для жесткого рентгена с длинами волн менее 1 нанометра (10-9 м).

Рентгеновские лучи взаимодействуют с веществом, ионизируя его атомы, в процессах фотоэффекта (фотопоглощения) и некогерентного (комптоновского) рассеяния. При фотопоглощении рентгеновский фотон, поглощаясь электроном атома, передает ему энергию. Если ее величина превышает энергию связи электрона в атоме, то он покидает атом. Комптоновское рассеяние характерно для более жестких (энергичных) рентгеновских фотонов. Часть энергии поглощаемого фотона затрачивается на ионизацию; при этом под некоторым углом к направлению первичного фотона излучается вторичный, с меньшей частотой.

Виды рентгеновского излучения. Тормозное излучение

Для получения лучей используют рентгеновские трубки, представляющие собой стеклянные вакуумные баллоны с расположенными внутри электродами. Разность потенциалов на электродах нужна очень высокая – до сотен киловольт. На вольфрамовом катоде, подогреваемом током, происходит термоэлектронная эмиссия, то есть с него испускаются электроны, которые, ускоряясь разностью потенциалов, бомбардируют анод. В результате их взаимодействия с атомами анода (иногда его именуют антикатодом) рождаются фотоны рентгеновского диапазона.

В зависимости от того, какой процесс приводит к рождению фотона, различают такие виды рентгеновского излучения, как тормозное и характеристическое.

Электроны могут, встречаясь с анодом, тормозиться, то есть терять энергию в электрических полях его атомов. Эта энергия излучается в форме рентгеновских фотонов. Такое излучение называется тормозным.

Понятно, что условия торможения будут различаться для отдельных электронов. Это значит, что в рентгеновское излучение преобразуются разные количества их кинетической энергии. В результате тормозное излучение включает фотоны разных частот и, соответственно, длин волн. Поэтому спектр его является сплошным (непрерывным). Иногда по этой причине его еще называют «белым» рентгеновским излучением.

Энергия тормозного фотона не может превышать кинетическую энергию порождающего его электрона, так что максимальная частота (и наименьшая длина волны) тормозного излучения соответствует наибольшему значению кинетической энергии налетающих на анод электронов. Последняя же зависит от приложенной к электродам разности потенциалов.

Существует еще один тип рентгеновского излучения, источником которого является иной процесс. Это излучение именуют характеристическим, и мы остановимся на нем подробнее.

Как возникает характеристическое рентгеновское излучение

Достигнув антикатода, быстрый электрон может проникнуть внутрь атома и выбить какой-либо электрон с одной из нижних орбиталей, то есть передать ему энергию, достаточную для преодоления потенциального барьера. Однако при наличии в атоме более высоких энергетических уровней, занятых электронами, освободившееся место пустым не останется.

Необходимо помнить, что электронная структура атома, как и всякая энергетическая система, стремится минимизировать энергию. Образовавшаяся в результате выбивания вакансия заполняется электроном с одного из вышележащих уровней. Его энергия выше, и, занимая более низкий уровень, он излучает излишек в форме кванта характеристического рентгеновского излучения.

Электронная структура атома – это дискретный набор возможных энергетических состояний электронов. Поэтому рентгеновские фотоны, излучаемые в процессе замещения электронных вакансий, также могут иметь только строго определенные значения энергии, отражающие разность уровней. Вследствие этого характеристическое рентгеновское излучение обладает спектром не сплошного, а линейчатого вида. Такой спектр позволяет характеризовать вещество анода – отсюда и название этих лучей. Именно благодаря спектральным различиям ясно, что понимают под тормозным и характеристическим рентгеновским излучением.

Иногда излишек энергии не излучается атомом, а затрачивается на выбивание третьего электрона. Этот процесс – так называемый эффект Оже – с большей вероятностью происходит, когда энергия связи электрона не превышает 1 кэВ. Энергия освобождающегося оже-электрона зависит от структуры энергетических уровней атома, поэтому спектры таких электронов также носят дискретный характер.

Общий вид характеристического спектра

Узкие характеристические линии присутствуют в рентгеновской спектральной картине вместе со сплошным тормозным спектром. Если представить спектр в виде графика зависимости интенсивности от длины волны (частоты), в местах расположения линий мы увидим резкие пики. Их позиция зависит от материала анода. Эти максимумы присутствуют при любой разности потенциалов – если есть рентгеновские лучи, пики тоже всегда есть. При повышении напряжения на электродах трубки интенсивность и сплошного, и характеристического рентгеновского излучения нарастает, но расположение пиков и соотношение их интенсивностей не меняется.

Характеристический рентгеновский спектр

Пики в рентгеновских спектрах имеют одинаковый вид независимо от материала облучаемого электронами антикатода, но у различных материалов располагаются на разных частотах, объединяясь в серии по близости значений частоты. Между самими сериями различие по частотам намного значительнее. Вид максимумов никак не зависит от того, представляет ли материал анода чистый химический элемент или же это сложное вещество. В последнем случае характеристические спектры рентгеновского излучения составляющих его элементов просто накладываются друг на друга.

С повышением порядкового номера химического элемента все линии его рентгеновского спектра смещаются в сторону повышения частоты. Спектр при этом сохраняет свой вид.

Закон Мозли

Явление спектрального сдвига характеристических линий было экспериментально обнаружено английским физиком Генри Мозли в 1913 году. Это позволило ему связать частоты максимумов спектра с порядковыми номерами химических элементов. Таким образом, и длину волны характеристического рентгеновского излучения, как выяснилось, можно четко соотнести с определенным элементом. В общем виде закон Мозли можно записать следующим образом: √f = (Z – Sn)/n√R, где f – частота, Z – порядковый номер элемента, Sn – постоянная экранирования, n – главное квантовое число и R – постоянная Ридберга. Эта зависимость имеет линейный характер и на диаграмме Мозли выглядит как ряд прямых линий для каждого значения n.

Значения n соответствуют отдельным сериям пиков характеристического рентгеновского излучения. Закон Мозли позволяет по измеряемым значениям длин волн (они однозначно связаны с частотами) максимумов рентгеновского спектра устанавливать порядковый номер химического элемента, облучаемого жесткими электронами.

Структура электронных оболочек химических элементов идентична. На это указывает монотонность сдвигового изменения характеристического спектра рентгеновского излучения. Частотный сдвиг отражает не структурные, а энергетические различия между электронными оболочками, уникальные для каждого элемента.

Генри Мозли

Роль закона Мозли в атомной физике

Существуют небольшие отклонения от строгой линейной зависимости, выражаемой законом Мозли. Они связаны, во-первых, с особенностями порядка заполнения электронных оболочек у некоторых элементов, и, во-вторых, с релятивистскими эффектами движения электронов тяжелых атомов. Кроме того, при изменении количества нейтронов в ядре (так называемом изотопическом сдвиге) положение линий может слегка меняться. Этот эффект дал возможность детально изучить атомную структуру.

Значение закона Мозли чрезвычайно велико. Последовательное применение его к элементам периодической системы Менделеева установило закономерность увеличения порядкового номера соответственно каждому небольшому сдвигу характеристических максимумов. Это способствовало прояснению вопроса о физическом смысле порядкового номера элементов. Величина Z – это не просто номер: это положительный электрический заряд ядра, представляющий собой сумму единичных положительных зарядов частиц, входящих в его состав. Правильность размещения элементов в таблице и наличие в ней пустых позиций (тогда они еще существовали) получили мощное подтверждение. Была доказана справедливость периодического закона.

Закон Мозли, помимо этого, стал основой, на которой возникло целое направление экспериментальных исследований – рентгеновская спектрометрия.

Строение электронных оболочек атома

Вкратце вспомним, как устроена электронная структура атома. Она состоит из оболочек, обозначаемых буквами K, L, M, N, O, P, Q либо цифрами от 1 до 7. Электроны в пределах оболочки характеризуются одинаковым главным квантовым числом n, определяющим возможные значения энергии. Во внешних оболочках энергия электронов выше, а потенциал ионизации для внешних электронов соответственно ниже.

Оболочка включает один или несколько подуровней: s, p, d, f, g, h, i. В каждой оболочке количество подуровней увеличивается на один по сравнению с предыдущей. Количество электронов в каждом подуровне и в каждой оболочке не может превышать определенного значения. Они характеризуются, помимо главного квантового числа, одинаковым значением орбитального квантового числа, определяющего форму электронного облака. Подуровни обозначаются с указанием оболочки, которой они принадлежат, например, 2s, 4d и так далее.

Подуровень содержит атомные орбитали, которые задаются, кроме главного и орбитального, еще одним квантовым числом – магнитным, определяющим проекцию орбитального момента электрона на направление магнитного поля. Одна орбиталь может иметь не более двух электронов, различающихся значением четвертого квантового числа – спинового.

Электронные оболочки некоторых атомов

Рассмотрим подробнее, как возникает характеристическое рентгеновское излучение. Так как происхождение этого типа электромагнитной эмиссии связано с явлениями, происходящими внутри атома, удобнее всего описывать его именно в приближении электронных конфигураций.

Механизм генерации характеристического рентгеновского излучения

Итак, причиной возникновения данного излучения является образование электронных вакансий во внутренних оболочках, обусловленное проникновением высокоэнергичных электронов глубоко внутрь атома. Вероятность того, что жесткий электрон вступит во взаимодействие, возрастает с увеличением плотности электронных облаков. Следовательно, наиболее вероятным будет столкновение в пределах плотно упакованных внутренних оболочек, например, самой нижней К-оболочки. Здесь атом ионизируется, и в оболочке 1s образуется вакансия.

Эта вакансия заполняется электроном из оболочки с большей энергией, избыток которой уносится рентгеновским фотоном. Этот электрон может «упасть» из второй оболочки L, из третьей М и так далее. Так формируется характеристическая серия, в данном примере – К-серия. Указание на то, откуда происходит заполнивший вакансию электрон, дается в виде греческого индекса при обозначении серии. «Альфа» означает, что он происходит из L-оболочки, «бета» – из М-оболочки. В настоящее время существует тенденция к замене греческих буквенных индексов латинскими, принятыми для обозначения оболочек.

Интенсивность альфа-линии в серии всегда наивысшая – это значит, что вероятность заполнения вакансии из соседней оболочки самая высокая.

Теперь мы можем ответить на вопрос, какова максимальная энергия кванта характеристического рентгеновского излучения. Она определяется разностью значений энергии уровней, между которыми совершается переход электрона, по формуле E = En2 – En1, где En2 и En1 – энергии электронных состояний, между которыми произошел переход. Наивысшее значение этого параметра дают переходы К-серии с максимально высоких уровней атомов тяжелых элементов. Но интенсивность этих линий (высота пиков) самая малая, поскольку они наименее вероятны.

Если из-за недостаточности напряжения на электродах жесткий электрон не может достичь К-уровня, он образует вакансию на L-уровне, и формируется менее энергичная L-серия с большими длинами волн. Аналогичным образом рождаются последующие серии.

Серии характеристического рентгеновского излучения

Кроме того, при заполнении вакансии в результате электронного перехода возникает новая вакансия в вышележащей оболочке. Это создает условия для генерирования следующей серии. Электронные вакансии перемещаются выше с уровня на уровень, и атом испускает каскад характеристических спектральных серий, оставаясь при этом ионизированным.

Тонкая структура характеристических спектров

Атомным рентген-спектрам характеристического рентгеновского излучения свойственна тонкая структура, выражающаяся, как и в оптических спектрах, в расщеплении линий.

Тонкая структура связана с тем, что энергетический уровень – электронная оболочка – представляет собой набор тесно расположенных компонентов – подоболочек. Для характеристики подоболочек введено еще одно, внутреннее квантовое число j, отражающее взаимодействие собственного и орбитального магнитных моментов электрона.

В связи с влиянием спин-орбитального взаимодействия энергетическая структура атома усложняется, и в результате характеристическое рентгеновское излучение имеет спектр, которому свойственны расщепленные линии с очень близко расположенными элементами.

Элементы тонкой структуры принято обозначать дополнительными цифровыми индексами.

Тонкая структура характеристического спектра

Характеристическое рентгеновское излучение обладает особенностью, отраженной только в тонкой структуре спектра. Переход электрона на низший энергетический уровень не происходит с нижней подоболочки вышележащего уровня. Такое событие имеет пренебрежимо малую вероятность.

Использование рентгена в спектрометрии

Это излучение благодаря своим особенностям, описанным законом Мозли, лежит в основе различных рентгеноспектральных методов анализа веществ. При анализе рентгеновского спектра применяют либо дифракцию излучения на кристаллах (волнодисперсионный метод), либо чувствительные к энергии поглощенных рентгеновских фотонов детекторы (энергодисперсионный метод). Большинство электронных микроскопов оснащены теми или иными рентгеноспектрометрическими приставками.

Особенно высокой точностью отличается волнодисперсионная спектрометрия. При помощи особых фильтров выделяются наиболее интенсивные пики в спектре, благодаря чему можно получить практически монохроматическое излучение с точно известной частотой. Материал анода выбирается очень тщательно, чтобы обеспечить получение монохроматического пучка нужной частоты. Его дифракция на кристаллической решетке изучаемого вещества позволяет исследовать структуру решетки с большой точностью. Этот метод применяется также в изучении ДНК и других сложных молекул.

Рентгеновский спектрометр

Одна из особенностей характеристического рентгеновского излучения учитывается и в гамма-спектрометрии. Это высокая интенсивность характеристических пиков. В гамма-спектрометрах применяется свинцовая защита от внешних фоновых излучений, вносящих помехи в измерения. Но свинец, поглощая гамма-кванты, испытывает внутреннюю ионизацию, в результате чего активно излучает в рентгеновском диапазоне. Для поглощения интенсивных максимумов характеристического рентгеновского излучения свинца используется дополнительная кадмиевая экранировка. Она, в свою очередь, ионизируется и также излучает в рентгене. Для нейтрализации характеристических пиков кадмия применяют третий экранирующий слой – медный, рентгеновские максимумы которого лежат вне рабочего диапазона частот гамма-спектрометра.

Спектрометрия использует и тормозное, и характеристическое рентгеновское излучение. Так, при анализе веществ исследуются спектры поглощения сплошного рентгена различными веществами.



Источник: FB.ru


Добавить комментарий