Теплопродукция лошади

Теплопродукция лошади

Химическая терморегуляция имеет большое значение для поддержания постоянства температуры тела, как в нормальных условиях, так и при изменении температуры окружающей среды. У человека усиление теплообразования вследствие увеличения интенсивности обмена веществ отмечается, в частности, тогда, когда температура окружающей среды становится ниже оптимальной температуры, или зоны комфорта. При обычной легкой одежде эта зона находится в пределах 18—20°С, а для обнаженного человека 28 °С. Оптимальная температура во время пребывания в воде выше, чем на воздухе. Это обусловлено тем, что вода, обладающая высокой теплоемкостью и теплопроводностью, охлаждает тело в 14 раз сильнее, чем воздух. Поэтому в прохладной ванне обмен веществ повышается значительно больше, чем во время пребывания на воздухе при той же температуре. Наиболее интенсивное теплообразование в организме происходит в мышцах. Даже если человек лежит неподвижно, но с напряженной мускулатурой, окислительные процессы, а вместе с тем и теплообразование повышаются на 10%. Небольшая двигательная активность ведет к увеличению теплообразования на 50—80%, а тяжелая мышечная работа — на 400—500%. В условиях холода теплообразование в мышцах увеличивается, даже если человек находится в неподвижном состоянии. Это обусловлено тем, что охлаждение поверхности тела, действуя на рецепторы, воспринимающие холодовое раздражение, рефлекторно возбуждает беспорядочные непроизвольные сокращения мышц, проявляющиеся в виде дрожи (озноб). При этом обменные процессы организма значительно усиливаются, увеличивается потребление кислорода и углеводов мышечной тканью, что и влечет за собой повышение теплообразования. Даже произвольная имитация дрожи увеличивает теплообразование на 200%. Если в организм введены миорелаксанты — вещества, нарушающие передачу нервных импульсов с нерва на мышцу и тем самым устраняющие рефлекторную мышечную дрожь, при понижении температуры окружающей среды гораздо быстрее наступает понижение температуры тела. В химической терморегуляции, кроме мышц, значительную роль играют печень и почки. Температура крови печеночной вены выше температуры крови печеночной артерии, что указывает на интенсивное теплообразование в этом органе. При охлаждении тела теплопродукция в печени возрастает. Освобождение энергии в организме совершается за счет окислительного распада белков, жиров и углеводов. Поэтому все механизмы, которые регулируют окислительные процессы, регулируют и теплообразование. 1

2.3. Центральный нервный механизм терморегуляции.

Регуляторные реакции, обеспечивающие сохранение постоянства температуры тела, представляют собой сложные рефлекторные акты, которые возникают в ответ на температурное раздражение рецепторов кожи, кожных и подкожных сосудов, а также самой ЦНС. Эти рецепторы, воспринимающие холод и тепло, названы терморецепторами. При относительно постоянной температуре окружающей среды от рецепторов в ЦНС поступают ритмичные импульсы, отражающие их тоническую активность. Частота этих импульсов максимальна для холодовых рецепторов кожи и кожных сосудов при температуре 20—30°С, а для кожных тепловых рецепторов — при температуре 38—43ºС. При резком охлаждении кожи частота импульсации в холодовых рецепторах возрастает, а при быстром согревании уряжается или прекращается. На такие же перепады температуры тепловые рецепторы реагируют прямо противоположно.

Тепловые и холодовые рецепторы ЦНС реагируют на изменение температуры крови, притекающей к нервным центрам. Терморецепторы ЦНС находятся в передней части гипоталамуса — в преоптической зоне, в ретикулярной формации среднего мозга, а также в спинном мозге. Наличие в ЦНС температурных рецепторов доказывается многими экспериментами. Так, например, если денервированные задние конечности собаки погрузить в холодную воду, это вызывает дрожь мышц головы, передних конечностей и туловища и усиление теплообразования.

Терморегуляторные рефлексы, вызываемые раздражением холодовых рецепторов кожи, в данном опыте исключены перерезкой нервов, и эффекты охлаждения конечностей объясняются только понижением температуры крови и раздражением центральных холодовых рецепторов. Дрожь и сужение кожных сосудов, а, следовательно, повышение теплообразования и понижение теплоотдачи возникают также при охлаждении сонной артерии, приносящей кровь к головному мозгу.

Термочувствительность гипоталамуса была показана в экспериментах на ненаркотизированных кроликах. Животным в область гипоталамуса вживляли специальные термонагреватели. Оказалось, что повышение температуры на 0,41ºС вызывает выраженную терморегуляционную реакцию, проявляющуюся в расширении сосудов уха. Такая реакция проявлялась при температуре среды 22—27 °С. Когда же температуру среды снижали до 17-20°С, то для получения сосудорасширяющей реакции нагревание гипоталамуса нужно было увеличить на 0,84 °С. Таким образом, понижение окружающей температуры, а следовательно, изменение характера температурного воздействия на экстерорецепторы уменьшает температурную чувствительность гипоталамуса.

Участие гипоталамуса в терморегуляции обеспечивает взаимодействие восприятия сигналов об изменении температуры окружающей и внутренней среды. Именно в гипоталамусе расположены основные центры терморегуляции, которые координируют многочисленные и сложные процессы, обеспечивающие сохранение температуры тела на постоянном уровне. Это доказывается тем, что разрушение гипоталамуса влечет за собой потерю способности регулировать температуру тела и делает животное пойкилотермным, в то время как удаление коры большого мозга, полосатого тела и зрительных бугров заметно не отражается на процессах теплообразования и теплоотдачи. При изучении роли различных участков гипоталамуса в терморегуляции обнаружены ядра, изменяющие процесс теплообразования, и ядра, влияющие на теплоотдачу.

Химическая терморегуляция (усиление теплообразования, мышечная дрожь) контролируется хвостовой частью гипоталамуса. Разрушение этого участка мозгового ствола у животных делает их неспособными переносить холод. Охлаждение животного после такой операции не вызывает дрожи и компенсаторного повышения теплообразования. Физическая терморегуляция (сужение сосудов, потоотделение) контролируется передней частью гипоталамуса. Разрушение данной области — центра теплоотдачи — не лишает животного способности переносить холод; но после операции оно быстро перегревается при высокой температуре окружающей среды (так как поврежден механизм, обеспечивающий физическую терморегуляцию). Центры теплообразования и центры теплоотдачи находятся между собой в сложных взаимоотношениях и взаимоподавляют друг друга.

Терморегуляторпые рефлексы могут осуществляться и спинным мозгом. Охлаждение спинного мозга животного, у которого этот отдел ЦНС отделен перерезкой от вышележащих отделов, вызывает мышечную дрожь и сужение периферических сосудов. Значение спинного мозга в терморегуляции состоит не только в том, что он является проводником сигналов, идущих от периферических рецепторов к головному мозгу, и влияний, поступающих от головного мозга к мышцам, сосудам и потовым железам, но и в том, что в спинном мозге находятся центры некоторых терморегуляторных рефлексов, имеющих, правда, несколько ограниченное регуляторное значение. Так, после перерезки мозгового ствола ниже гипоталамических центров терморегуляции способность организма усиливать теплообразование и повышать интенсивность окислительных процессов на холоду резко понижена и не обеспечивает постоянной температуры тела. Равным образом после перерезки мозгового ствола или отделения спинного мозга от продолговатого резко нарушена и физическая терморегуляция, поэтому при повышении окружающей температуры животное легко перегревается, так как одни спинальные терморегуляторные механизмы неспособны обеспечить постоянство температуры тела. Хотя удаление коры большого мозга заметно не отражается на процессах теплообразования и теплоотдачи, однако неправомерно делать вывод, что это образование не влияет на тепловой обмен. Эксперименты на животных и наблюдения на людях показали возможность условнорефлекторных изменений теплопродукции и теплоотдачи, которые осуществляются корой большого мозга.

В осуществлении гипоталамической регуляции температуры тела участвуют железы внутренней секреции, главным образом щитовидная и надпочечники, образование гормонов в которых контролируется нервной системой. Участие щитовидной железы в терморегуляций доказывается тем, что введение в кровь животного сыворотки крови другого животного, которое длительное время находилось на холоде, вызывает у первого повышение обмена веществ. Такой эффект наблюдается лишь при сохранении у второго животного щитовидной железы. Очевидно, во время пребывания в условиях охлаждения происходит усиленное выделение в кровь гормона щитовидной железы, повышающего обмен веществ и, следовательно, образование тепла. Участие надпочечников в терморегуляции связано с выделением ими в кровь адреналина, который, усиливая окислительные процессы в тканях, в частности, в мышцах, повышает теплообразование и суживает кожные сосуды, уменьшая теплоотдачу. Поэтому адреналин способен вызывать повышение температуры тела (адреналиновая гипертермия).1



Источник: studfile.net


Добавить комментарий