В митохондриях происходит образование вещества богатого энергией

В митохондриях происходит образование вещества богатого энергией

Митохондрии — органеллы эукариотических клеток, осуществляющие аэробное дыхание клетки.

Число митохондрий в клетке очень непостоянно. Оно зависит от вида организма и от природы клетки. В клетках, в которых потребность в энергии велика, содержится много митохондрий. Например, в одной печёночной клетке их может быть около одной тысячи. В менее активных клетках митохондрий меньше. Чрезвычайно сильно варьируют также размеры и форма митохондрий. Митохондрии могут быть спиральными, округлыми, вытянутыми, чашевидными и даже разветвленными. В более активных клетках они обычно крупнее. Длина митохондрий может быть ~1,5 ч 10 мкм, а ширина — ~0,25 ч 1,00 мкм.

Митохондрии способны изменять свою форму, а некоторые митохондрии могут также перемещаться в особо активные участки клетки. Такое перемещение, которому способствует поток цитоплазмы, позволяет клетке сосредоточивать большее число митохондрий в тех местах, где выше потребность в АТФ.

Каждая митохондрия окружена двумя мембранами. Наружную мембрану отделяет от внутренней расстояние ~6 ч 10 нм. Внутренняя мембрана заключает в себе полужесткий матрикс митохондрии. Эта мембрана образует многочисленные гребневидные складки — кристы (от лат.: crista — гребень). Полагают, что наружная митохондриальная мембрана проницаема для веществ с молекулярной массой меньше 21000 и что именно такие вещества через нее диффундируют. Кристы внутренней мембраны существенно увеличивают ее поверхность, обеспечивая место для размещения мультиферментных систем и облегчая доступ к ферментам, находящимся в митохондриальном матриксе. Внутренняя мембрана отличается избирательной проницаемостью, т.е. пропускает лишь определенные вещества. Известно, что активный транспорт АДФ и АТФ через внутреннюю митохондриальную мембрану осуществляют особые ферменты, называемые транслоказами. На той стороне внутренней митохондриальной мембраны, которая обращена к матриксу, присутствуют особые «элементарные частицы». Каждая такая частица состоит из головки, ножки и основания. Элементарные частицы полностью погружены в мембрану. Головки частиц ответственны за синтез АТФ. Это АТФаза , обеспечивающая сопряжение фосфорилирования АДФ с реакциями в дыхательной цепи. В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты самой дыхательной цепи. Они размещены по отношению друг к другу строго упорядоченным образом. В митохондриальном матриксе содержится большая часть ферментов, участвующих в цикле Кребса и в окислении жирных кислот. Здесь же находятся митохондриальные ДНК, РНК и рибосомы, а также ряд различных не очень крупных белков.

Митохондриальная ДНК несет информацию для синтеза около тридцати белков. Этого, однако, недостаточно, так как для построения новой митохондрии требуется большее число белков. В какой-то мере, следовательно, образование новых митохондрии должно зависеть от ядерной ДНК, от цитоплазматических ферментов и от некоторых других молекул, поставляемых клеткой.

На протяжении ста с лишним лет, т. е. со времени первых работ Кёлликера (1850), наблюдавшего гранулы в саркоплазме поперечнополосатых мышц, велись кропотливые морфологические исследования, которые постепенно подготавливали почву для всестороннего изучения природы митохондрий. Но только в 1949 г.

Кеннеди и Ленинджер установили, что в митохондриях протекает цикл окислительного фосфорилирования, т.е. что митохондрий служат местом генерирования энергии. С этого момента начинается новая эра в изучении митохондрий — эра, в которой блистательные открытия следуют одно за другим.

В короткий срок были открыты осмотическая, сократительная, регуляторная и генетическая функции митохондрий и найдены многие из тех молекулярных структур, которые служат первичным субстратом ‘этих функций. Было показано также, что митохондрий обеспечивают интеграцию многочисленных процессов клеточного обмена. Эти исследования еще не, завершены, но они могут служить примером плодотворности нового подхода к изучению живого, того подхода, который отличает молекулярную биологию.

В развитии молекулярной биологии за последнее время наметился новый этап. До сих пор это были исследования главным образом, на уровне однородных молекул белков и нуклеиновых кислот, исследования, посвященные их структуре, функции и биосинтезу. Теперь же исследователь не довольствуется этим и переходит к изучению специфически организованных надмолекулярных комплексов, каковыми являются клеточные органеллы.

Некоторые функции этих органелл также могут быть истолкованы на уровне индивидуальных молекул, например молекул отдельных ферментов. Но главная особенность клеточных органелл — это интеграция ферментативных процессов.

Так, благодаря наличию в составе митохондрий различных белков, липидов, нуклеиновых кислот и углеводов, соединению их между собой и упорядоченному размещению в пространстве в виде трехслойных мембран эти образования приобретают свойства, которые исчезают при их расчленении на отдельные молекулы. Свойства эти: векторный характер действия митохондриальных ферментов (в отличие от скалярного, т. е. не зависящего от направления, действия растворимых ферментов), способность к непосредственному преобразованию энергии окисления в осмотическую и механическую энергию, способность к автономному синтезу белков и т. д. Каждое из этих свойств определяется не простой суммой реакций, катализируемых отдельными ферментами, а обусловлено взаимодействием точно ориентированных ферментных и неферментных макромолекул. Само собой разумеется, что глубокое исследование и познание природы клеточных органелл возможно лишь путем расчленения их на отдельные молекулы с последующей реконструкцией.

Ультраструктура митохондрии

Общие принципы организации.

Внутренне пространство митохондрии окружено двумя непрерывными системами мембран, каждая из которых представляет собой замкнутый мешок; эти мешки расположены так, что всю митохондрию можно представить себе, как мешок внутри мешка. Просвет внутреннего мешка не сообщается с пространством между двумя мембранами. Наружная мембрана гладкая, а внутренняя образует многочисленные впячивания, которые в самом простом случае имеют форму перегородок, но могут принимать крайне сложные очертания. Палад назвал эти впячивания митохондриальными кристами. Другой характерный компонент структуры митохондрии — это матрикс, который заполняет просвет, окруженный внутренней мембраной. Известно, что он содержит много белка и некоторое количество липидов; по-видимому, он обладает определенной организацией и более или менее жесткой структурой. Наконец, митохондрии, фиксированные осмием часто содержат в матриксе ряд мелких гранул. Число, диаметр и плотность этих внутримитохондриальных гранул изменяются в зависимости от состояния обмена веществ в тканях.

Особенности строения мембраны митохондрии.

Так как наибольшее практическое значение представляют внутренние мембраны митохондрии, содержащие дыхательные ансамбли, имеет смысл более детально познакомиться с ультраструктурой митохондриальной мембраны. При детальном анализе было выявлено, что митохондриальные мембраны содержат 35-40 % липидов, преимущественно фосфатидов, и 60 — 65 % белка. Небольшие различия, которые иногда наблюдаются обусловлены различными условиями получения при использовании различных физических и химических способов разрушения структуры митохондрии.

Митохондрии печени крысы содержат значительные количества фосфатидилэтаноламина, фосфатидилхолина, инозитфосфатидов, кардиолипина и фосфатидилсерина; содержание плазмалогена и сфингомиелина невелико, иногда они вовсе отсутствуют. Характерное содержание и количественное содержание липидов в митохондриальной мембране, вероятно обусловлены необходимостью поддержания термодинамически устойчивого двойного слоя липидов, образующего остов мембраны, который служит опорой для дыхательных ансамблей. По- видимому, большое значение имеет тот факт, что практически все липиды митохондриальной мембраны экстрагируются смесью хлороформ — метанол. Это указывает на наличие лишь незначительного числа ковалентных связей между липидами и белковыми элементами или даже на полное их отсутствие; этот факт свидетельствует о высокой степени стабилизации липидов и белков мембранных структурах. Крейн показал, что цитохром с соединяется с фосфатидилэтаноламином, образуя устойчивый комплекс. Возможно, что именно такое взаимодействие липид — белок совместно с гидрофобными связями и обеспечивает такую стабилизацию мембранной структуры. Криддл и сотрудники выделили мономерную форму, которую они назвали структурным белком митохондриальной мембраны. При нейтральном рН структурный белок находится в полимерной форме и не растворим в воде. Мономерная форма имеет молекулярный вес около 22000, но тенденция к полимеризации нарушает точность седиментационных и электрофоретических исследований. Структурный белок способен соединяться с чистыми цитохромами а, Ь, и ее образованием растворимых в воде комплексов в молярном отношении 1:1, причем условия этого взаимодействия для каждого случая различны. Предполагается, что в таких комплексах образуются преимущественно гидрофобные связи. Далее, оказалось, что структурный белок соединяется с фосфолипидами. Таким образом, структурный белок способен к взаимодействию с двумя другими основными молекулярными элементами мембраны — с переносчиками электронов и с фосфолипидами. Склонность цитохромов, флавопротеидов и структурного белка к существованию в мономерной и полимерной формах указывает на выраженную тенденцию этих молекул к образованию очень устойчивых макромолекулярных ансамблей, имеющих пластинчатую структуру.

Так как для будущих исследований наибольший интерес представляет цитохром с, то следует уделить особое внимание именно этому ферменту.

Этот цитохром отличается от остальных тем, что он легко экстрагируется из митохондрий в растворимой форме с помощью кислот и нейтральных растворов солей. Молекулярный вес кристаллического фермента 12000, изоэлектрическая точка при высоком рН; в молекулу входит одна железопорфириновая группа, которая представлена производным протопорфирина и соединена (ковалентно) с двумя цистеиновыми остатками пептидной цепи, посредством двух тиоэфирных связей.

При рН 7,0 атомы железа в положениях 5 и 6, очевидно, координированы с остатками гистидина; при нейтральных значениях рН цитохром с не имеет тенденции реагировать с кислородом. Известно, что третичная структура цитохрома с резко изменяется, как функция состояния окисления — восстановления.

Цитохром с восстанавливается тиолами, аскорбатом, хинолами, и восстановленными цитохромами b и с1, а восстановленный цитохром с окисляется феррицианидом, некоторыми красителями и цитохромом а.

Было показано, что в водных растворах цитохром с способен к полимеризации; удалось получить его димер и очистить так же тример и тетрамер. Вторичная и третичная структура цитохрома с изучается методом рентгеноструктурного анализа. Цитохром с легко соединяется с липидами, в частности с фосфатидилэтаноламином он образует комплекс, названный липоцитохромом с.

Функции митохондрий

Митохондрии осуществляют синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования АДФ. В клетках процессы окисления и выделения энергии, освобождающиеся в результате этого процесса, проходят в несколько взаимосвязанных этапов. При этом в качестве начальных субстратов используются различные углеводы, жирные кислоты, аминокислоты. Первые этапы окисления приводят кроме образования АТФ к появлению промежуточных продуктов, конечное окисление которых в митохондриях дает возможность клетке использовать этот процесс для синтеза основного количества АТФ.

Начальные этапы окисления углеводов происходят в гиалоплазме и не требуют участия кислорода. Поэтому они называются анаэробным окислением, или гликолизом. Главным субстратом окисления при анаэробном получении энергии служат гексозы и в первую очередь глюкоза; некоторые бактерии обладают свойством извлекать энергию, окисляяя пентозы, жирные кислоты или аминокислоты. В глюкозе количество потенциальной энергии, заключенной в связях между атомами С, Н и О, составляет около 680 ккал на 1 моль (т.е. на 180 г глюкозы); эта энергия освобождается при полном окислении глюкозы согласно следующей реакции:

С6Н12О6 + 6О2Ю 6Н2О + 6СО2 + 680 ккал

В живой клетке это огромное количество энергии не освобождается одновременно, как при горении в пламени. Освобождение энергии идет в виде ступенчатого процесса, управляемого целым рядом окислительных ферментов, и не связано с переходом энергии химической связи в тепло, как при горении, а с переходом ее в макроэнергетическую связь в молекуле АТФ, которая синтезируется при использовании освобождающейся энергии из АДФ и фосфата.

В процессе гликолиза происходит неполное окисление субстрата. В результате гликолиза глюкоза распадается до триоз, при этом тратятся 2 молекулы АТФ и синтезируются 4 молекулы АТФ. Так что в конечном результате клетка «зарабатывает» всего 2 молекулы АТФ. В энергетическом отношении этот процесс малоэффективен, поэтому из 680 ккал, заключающихся в связях 1 моля глюкозы, освобождается менее 10% энергии. Несмотря на низкий энергетический выход, анаэробное окисление, гликолиз, широко используется в живой природе. Он является основным поставляющим энергию процессом для многих микроорганизмов, некоторых кишечных паразитических анаэробных простейших, для клеток высших организмов на ранних стадиях эмбрионального развития, для многих опухолевых клеток, для клеток культуры ткани и др. Эритроциты млекопитающих, например, получают всю необходимую им энергию за счет гликолиза, так как у них нет митохондрий.

Образовавшиеся в результате гликолиза триозы, и в первую очередь пировиноградная кислота, вовлекаются в дальнейшее окисление, происходящее уже в самих митохондриях. При этом происходит использование энергии расщепления всех химических связей, что приводит к выделению СО2, к потреблению кислорода и синтезу большого количества АТФ. Эти процессы связаны с окислительным циклом трикарбоновых кислот и с дыхательной цепью переноса электронов, где происходит фосфорилирование АДФ и синтез клеточного «топлива», молекул АТФ.

В цикле трикарбоновых кислот (цикл Кребса, или цикл лимонной кислоты) образовавшийся в результате гликолиза пируват сначала теряет молекулу СО2 и, окисляясь до ацетата (двууглеродное соединение), соединяется с коферментом А. Затем ацетилкоэнзим А, соединяясь с оксалацетатом (четырехуглеродное соединение), образует шестиуглеродный цитрат (лимоную кислоту). Затем происходит цикл окисления этого шестиуглеродного соединения до четырехуглеродного оксалацетата, снова связывание с ацетилкоэнзимом А, и затем цикл повторяется. При этом окислении выделяются две молекулы СО2, а электроны, освободившиеся при окислении, переносятся на акцепторные молекулы коферментов (NAD-никотинамидадениндинуклеотид), которые вовлекают их далее в цепь переноса электронов. Следовательно, в цикле трикарбоновых кислот нет самого синтеза АТФ, а идет окисление молекул, перенос электронов на акцепторы и выделение СО2. Все описанные выше события внутри митохондрий происходят в их матриксе.

Выделенные митохондрии обладают способностью осуществлять окисление пирувата до СО2 и способны к синтезу АТФ. Если взвесь митохондрий подвергнуть воздействию ультразвука, то после разрыва митохондриальных мембран компоненты матрикса освобождаются и переходят в среду выделения. После такого разрушения можно осадить мембраны митохондрий и анализировать их функциональные активности.

Было обнаружено, что во фракции, свободной от мембран, представляющей собой компоненты матрикса, обнаруживаются ферменты, участвующие в цикле трикарбоновых кислот. Следовательно, в матриксе локализованы ферменты этого цикла, которые находятся в свободном, не связанном состоянии с митохондриальными мембранами, за исключением сукцинатдегидрогеназы. Кроме того, в состав матрикса входят ферменты окисления жирных кислот; основной продукт окисления жирных кислот — ацетилкоэнзим Б — тоже в матриксе поступает в цикл трикарбоновых кислот, в котором он подвергается дальнейшему окислению до СО2 и Н2О В матриксе митохондрий происходит также окисление некоторых аминокислот, поступающих в цикл трикарбоновых кислот.

Остальные события, связанные с дальнейшим переносом электронов и синтезом АТФ связаны с внутренней митохондриальной мембраной, с кристами митохондрий.

Освободившиеся в процессе окисления в цикле трикарбоновых кислот электроны, акцептированные на коферментах, переносятся затем в дыхательную цепь (цепь переноса электронов), где они соединяются с молекулярным кислородом, образуя молекулы воды.

Дыхательная цепь представляет собой ряд белковых комплексов, встроенных во внутреннюю митохондриальную мембрану. Существуют три главных ферментных комплекса. Первый, NADH-дегидрогеназный комплекс принимает электроны от NADH и переносит их во второй комплекс, комплекс в-С1, который в свою очередь, переносит их на цитохромоксидазный комплекс, а он их передает на кислород, в результате чего образуется вода. На этом окисление заканчивается.

Как и полагается, окисление исходного субстрата привело к выделению СО2 и воды, но при этом не выделилась тепловая энергия, как при горении, а образовались молекулы АТФ. Они были синтезированы другой группой белков, не связанных прямо с окислением. Было найдено, что во внутренних митохондриальных мембранах на поверхности мембран, смотрящих в матрикс, располагаются крупные белковые комплексы, ферменты, АТФ-синтетазы. В электронном микроскопе во фракции внутренних митохондриальных частиц видны так называемые «грибовидные» тельца сплошь выстилающие поверхность мембран, смотрящую в матрикс. Эти тельца имеют как бы ножку и головку. Диаметром 8-9 нм. Было обнаружено, что эти тельца представляют собой белковый комплекс, состоящий из 9 субъединиц — АТФ-синтетазу. Следовательно, во внутренних мембранах митохондрий локализованы ферменты как окислительной цепи, так и ферменты синтеза АТФ.

Дыхательная цепь — это главная система превращения энергии в митохондриях. Здесь происходит последовательное окисление и восстановление элементов дыхательной цепи, в результате чего высвобождается небольшими порциями энергия. За счет этой энергии в трех точках цепи из АДФ и фосфата образуется АТФ. Поэтому говорят, что окисление (перенос электронов) сопряжено с фосфорилированием (АДФ + Фн >АТФ, т.е. происходит процесс окислительного фосфорилирования.

В результате многократной оборачиваемости субстратов в цикле Кребса происходит полное окисление поступивших продуктов первичного гликолитического окисления, и затем в цепи окислительного фосфорилирования происходит максимальное использование освободившейся при окислении энергии для синтеза АТФ.

Было высказано предположение, что выделяющаяся при транспорте электронов энергия запасается в виде градиента протонов на мембране. При этом на внешней поверхности внутренней мембраны митохондрий возникает повышенная концентрация положительно заряженных ионов водорода. Возникший при этом протонный градиент является движущей силой в синтезе АТФ.

Это предположение стало затем теорией, хемиосмотической теорией сопряжения окисления субстратов с синтезом АТФ. Как оказалось, при переносе электронов в митохондриальной мембране каждый комплекс дыхательной цепи направляет свободную энергию окисление на перемещение протонов (положительных зарядов) через мембрану, из матрикса в межмембранное пространство, что приводит к образованию разности потенциалов на мембране: положительные заряды преобладают в межмембранном пространстве, а отрицательные — со стороны матрикса митохондрий. При достижении определенной разности потенциалов (220 мВ) белковый комплекс АТФ-синтетазы начинает транспортировать протоны обратно в матрикс, при этом превращает одну форму энергии в другую: образует АТФ из АДФ и неорганического фосфата. Так происходит сопряжение окислительных процессов с синтетическим, с фосфорилированием АДФ. Пока происходит окисление субстратов, пока происходит перекачка протонов через внутреннюю митохондриальную мембрану — идет сопряженный с этим синтез АТФ, т.е. происходит окислительное фосфорилирование.

Эти два процесса могут быть разобщены. Можно снять разность потенциалов на митохондриальной мембране, или механически ее нарушить, или с помощью химических соединений (например, динитрофенола) сделать в ней диффузионные каналы. При этом будет продолжаться перенос электронов, будет продолжаться окисление субстрата, но синтеза АТФ уже происходить не будет. В этом случае энергия, освобождающаяся при окислении будет переходить в тепловую энергию.



Источник: vuzlit.ru


Добавить комментарий